Sensitivity Problems
Types of Sensitivity Problems in Fortuna.jl
Fortuna.jl districts two types of sensitivity problems:
| Type | Description |
|---|---|
| I | Used to find sensitivities w.r.t. to the parameters $\vec{\Theta}_{g}$ of the limit state function $g(\vec{X}, \vec{\Theta}_{g})$ |
| II | Used to find sensitivities w.r.t. to the parameters and/or moments $\vec{\Theta}_{f}$ of the random vector $\vec{X}(\vec{\Theta}_{f})$ |
Defining and Solving Sensitivity Problems of Type I
In general, 4 main "items" are always needed to fully define a sensitivity problem of type I and successfully solve it to find the associated sensitivity vectors of probability of failure $\vec{\nabla}_{\vec{\Theta}_{g}} P_{f}$ and reliability index $\vec{\nabla}_{\vec{\Theta}_{g}} \beta$ w.r.t. to the parameters of the limit state function $\vec{\Theta}_{g}$:
| Item | Description |
|---|---|
| $\vec{X}$ | Random vector |
| $\rho^{X}$ | Correlation matrix |
| $g(\vec{X}, \vec{\Theta}_{g})$ | Limit state function parametrized in terms of its parameters |
| $\vec{\Theta}_{g}$ | Parameters of the limit state function |
Fortuna.jl package uses these 4 "items" to fully define sensitivity problems of type I using SensitivityProblem() type as shown in the example below.
# Define the random vector:
M_1 = randomvariable("Normal", "M", [250, 250 * 0.3])
M_2 = randomvariable("Normal", "M", [125, 125 * 0.3])
P = randomvariable("Gumbel", "M", [2500, 2500 * 0.2])
Y = randomvariable("Weibull", "M", [40000, 40000 * 0.1])
X = [M_1, M_2, P, Y]
# Define the correlation matrix:
ρ_X = [
1.0 0.5 0.3 0.0
0.5 1.0 0.3 0.0
0.3 0.3 1.0 0.0
0.0 0.0 0.0 1.0
]
# Define the limit state function:
function g(x::Vector, θ::Vector)
1 - x[1] / (θ[1] * x[4]) - x[2] / (θ[2] * x[4]) - (x[3] / (θ[3] * x[4])) ^ 2
end
# Define parameters of the limit state function:
s_1 = 0.030
s_2 = 0.015
a = 0.190
Θ = [s_1, s_2, a]
# Define a sensitivity problem:
problem = SensitivityProblemTypeI(X, ρ_X, g, Θ)After defining a sensitivity problem of type I, Fortuna.jl allows to easily perform sensitivity analysis using a single solve() function as shown in the example below.
# Perform the sensitivity analysis:
solution = solve(problem)
println("∇β = $(solution.∇β)")
println("∇PoF = $(solution.∇PoF)")∇β = [36.77263941790439, 73.54527883580877, 9.257376773457297]
∇PoF = [-0.701303343141442, -1.402606686282884, -0.17655053819129746]Defining and Solving Sensitivity Problems of Type II
Similar to sensitivity problem of type I, 4 main "items" are needed to fully define a sensitivity problem of type II and successfully solve it to find the associated sensitivity vectors of probability of failure $\vec{\nabla}_{\vec{\Theta}_{f}} P_{f}$ and reliability index $\vec{\nabla}_{\vec{\Theta}_{f}} \beta$ w.r.t. to the parameters and/or moments of the random vector $\vec{\Theta}_{f}$:
| Item | Description |
|---|---|
| $\vec{X}(\vec{\Theta}_{f})$ | Random vector with correlated non-normal marginals parameterized in terms of its parameters and/or moments |
| $\rho^{X}$ | Correlation matrix |
| $g(\vec{X})$ | Limit state function |
| $\vec{\Theta}_{f}$ | Parameters and/or moments of the random vector |
Fortuna.jl package uses these 4 "items" to fully define sensitivity problems of type I using SensitivityProblem() type as shown in the example below.
# Define the random vector as a function of its parameters and moments:
function X(Θ::Vector)
M_1 = randomvariable("Normal", "M", [Θ[1], Θ[2]])
M_2 = randomvariable("Normal", "M", [Θ[3], Θ[4]])
P = randomvariable("Gumbel", "M", [Θ[5], Θ[6]])
Y = randomvariable("Weibull", "M", [Θ[7], Θ[8]])
return [M_1, M_2, P, Y]
end
# Define the correlation matrix:
ρ_X = [
1.0 0.5 0.3 0.0
0.5 1.0 0.3 0.0
0.3 0.3 1.0 0.0
0.0 0.0 0.0 1.0
]
# Define the parameters and moments of the random vector:
Θ = [250, 250 * 0.30, 125, 125 * 0.30, 2500, 2500 * 0.20, 40000, 40000 * 0.10]
# Define the limit state function:
a = 0.190
s_1 = 0.030
s_2 = 0.015
g(x::Vector) = 1 - x[1] / (s_1 * x[4]) - x[2] / (s_2 * x[4]) - (x[3] / (a * x[4])) ^ 2
# Define a sensitivity problem:
problem = SensitivityProblemTypeII(X, ρ_X, g, Θ)Similar to sensitivity problems of type I, sensitivity problems of type II are solved using the same solve() function as shown in the example below.
# Perform the sensitivity analysis:
solution = solve(problem)
println("∇β = $(solution.∇β)")
println("∇PoF = $(solution.∇PoF)")∇β = [-0.0032377353128871396, -0.003916604503803926, -0.006475470615160142, -0.007833209066095225, -0.0005458335705041564, -0.0007886353875053468, 0.00012366075320732487, -0.00024529264917604103]
∇PoF = [6.174793637546983e-5, 7.469487846834177e-5, 0.0001234958725485139, 0.00014938975805211586, 1.0409775144044032e-5, 1.504033005332379e-5, -2.358375711194135e-6, 4.678058405332219e-6]API
Fortuna.solve — Methodsolve(problem::SensitivityProblemTypeI; backend = AutoForwardDiff())Function used to solve sensitivity problems of type I (sensitivities w.r.t. the parameters of the limit state function).
Fortuna.solve — Methodsolve(problem::SensitivityProblemTypeII; backend = AutoForwardDiff())Function used to solve sensitivity problems of type II (sensitivities w.r.t. the parameters of the random vector).
Fortuna.SensitivityProblemTypeI — TypeSensitivityProblemTypeI <: AbstractReliabilityProblemType used to define sensitivity problems of type I (sensitivities w.r.t. the parameters of the limit state function).
X::AbstractVector{<:UnivariateDistribution}: Random vector $\vec{X}$ρ_X::AbstractMatrix{<:Real}: Correlation matrix $\rho^{X}$g::Function: Limit state function $g(\vec{X}, \vec{\Theta})$Θ::AbstractVector{<:Real}: Parameters of limit state function $\vec{\Theta}$
Fortuna.SensitivityProblemTypeII — TypeSensitivityProblemTypeII <: AbstractReliabilityProblemType used to define sensitivity problems of type II (sensitivities w.r.t. the parameters of the random vector).
X::Function: Random vector $\vec{X}(\vec{\Theta})$ρ_X::AbstractMatrix{<:Real}: Correlation matrix $\rho^{X}$g::Function: Limit state function $g(\vec{X})$Θ::AbstractVector{<:Real}: Parameters of limit state function $\vec{\Theta}$
Fortuna.SensitivityProblemCache — TypeSensitivityProblemCacheType used to store results of sensitivity analysis for problems of type I (sensitivities w.r.t. the parameters of the limit state function).
form_solution::iHLRFCache: Results of reliability analysis performed using First-Order Reliability Method (FORM)∇β::Vector{Float64}: Sensivity vector of reliability index $\vec{\nabla}_{\vec{\Theta}} \beta$∇PoF::Vector{Float64}: Sensivity vector of probability of failure $\vec{\nabla}_{\vec{\Theta}} P_{f}$