Sensitivity Problems
Types of Sensitivity Problems in Fortuna.jl
Fortuna.jl
districts two types of sensitivity problems:
Type | Description |
---|---|
I | Used to find sensitivities w.r.t. to the parameters $\vec{\Theta}_{g}$ of the limit state function $g(\vec{X}, \vec{\Theta}_{g})$ |
II | Used to find sensitivities w.r.t. to the parameters and/or moments $\vec{\Theta}_{f}$ of the random vector $\vec{X}(\vec{\Theta}_{f})$ |
Defining and Solving Sensitivity Problems of Type I
In general, 4 main "items" are always needed to fully define a sensitivity problem of type I and successfully solve it to find the associated sensitivity vectors of probability of failure $\vec{\nabla}_{\vec{\Theta}_{g}} P_{f}$ and reliability index $\vec{\nabla}_{\vec{\Theta}_{g}} \beta$ w.r.t. to the parameters of the limit state function $\vec{\Theta}_{g}$:
Item | Description |
---|---|
$\vec{X}$ | Random vector |
$\rho^{X}$ | Correlation matrix |
$g(\vec{X}, \vec{\Theta}_{g})$ | Limit state function parametrized in terms of its parameters |
$\vec{\Theta}_{g}$ | Parameters of the limit state function |
Fortuna.jl
package uses these 4 "items" to fully define sensitivity problems of type I using SensitivityProblem()
type as shown in the example below.
# Define the random vector:
M_1 = randomvariable("Normal", "M", [250, 250 * 0.3])
M_2 = randomvariable("Normal", "M", [125, 125 * 0.3])
P = randomvariable("Gumbel", "M", [2500, 2500 * 0.2])
Y = randomvariable("Weibull", "M", [40000, 40000 * 0.1])
X = [M_1, M_2, P, Y]
# Define the correlation matrix:
ρ_X = [
1.0 0.5 0.3 0.0
0.5 1.0 0.3 0.0
0.3 0.3 1.0 0.0
0.0 0.0 0.0 1.0]
# Define the limit state function:
g(x::Vector, θ::Vector) = 1 - x[1] / (θ[1] * x[4]) - x[2] / (θ[2] * x[4]) - (x[3] / (θ[3] * x[4])) ^ 2
# Define parameters of the limit state function:
s_1 = 0.030
s_2 = 0.015
a = 0.190
Θ = [s_1, s_2, a]
# Define a sensitivity problem:
problem = SensitivityProblemTypeI(X, ρ_X, g, Θ)
After defining a sensitivity problem of type I, Fortuna.jl
allows to easily perform sensitivity analysis using a single solve()
function as shown in the example below.
# Perform the sensitivity analysis:
solution = solve(problem)
println("∇β = $(solution.∇β)")
println("∇PoF = $(solution.∇PoF)")
∇β = [36.772639417904365, 73.54527883580873, 9.257376773457299]
∇PoF = [-0.7013033431414412, -1.4026066862828823, -0.17655053819129737]
Defining and Solving Sensitivity Problems of Type II
Similar to sensitivity problem of type I, 4 main "items" are needed to fully define a sensitivity problem of type II and successfully solve it to find the associated sensitivity vectors of probability of failure $\vec{\nabla}_{\vec{\Theta}_{f}} P_{f}$ and reliability index $\vec{\nabla}_{\vec{\Theta}_{f}} \beta$ w.r.t. to the parameters and/or moments of the random vector $\vec{\Theta}_{f}$:
Item | Description |
---|---|
$\vec{X}(\vec{\Theta}_{f})$ | Random vector with correlated non-normal marginals parameterized in terms of its parameters and/or moments |
$\rho^{X}$ | Correlation matrix |
$g(\vec{X})$ | Limit state function |
$\vec{\Theta}_{f}$ | Parameters and/or moments of the random vector |
Fortuna.jl
package uses these 4 "items" to fully define sensitivity problems of type I using SensitivityProblem()
type as shown in the example below.
# Define the random vector as a function of its parameters and moments:
function X(Θ::Vector)
M_1 = randomvariable("Normal", "M", [Θ[1], Θ[2]])
M_2 = randomvariable("Normal", "M", [Θ[3], Θ[4]])
P = randomvariable("Gumbel", "M", [Θ[5], Θ[6]])
Y = randomvariable("Weibull", "M", [Θ[7], Θ[8]])
return [M_1, M_2, P, Y]
end
# Define the correlation matrix:
ρ_X = [
1.0 0.5 0.3 0.0
0.5 1.0 0.3 0.0
0.3 0.3 1.0 0.0
0.0 0.0 0.0 1.0]
# Define the parameters and moments of the random vector:
Θ = [
250, 250 * 0.30,
125, 125 * 0.30,
2500, 2500 * 0.20,
40000, 40000 * 0.10]
# Define the limit state function:
a = 0.190
s_1 = 0.030
s_2 = 0.015
g(x::Vector) = 1 - x[1] / (s_1 * x[4]) - x[2] / (s_2 * x[4]) - (x[3] / (a * x[4])) ^ 2
# Define a sensitivity problem:
problem = SensitivityProblemTypeII(X, ρ_X, g, Θ)
Similar to sensitivity problems of type I, sensitivity problems of type II are solved using the same solve()
function as shown in the example below.
# Perform the sensitivity analysis:
solution = solve(problem)
println("∇β = $(solution.∇β)")
println("∇PoF = $(solution.∇PoF)")
∇β = [-0.003237735324247002, -0.0039166045667242445, -0.006475470671641298, -0.007833209139706684, -0.000545833565960213, -0.0007886353761454874, 0.00012366075320732482, -0.0002452926491760409]
∇PoF = [6.174793659211753e-5, 7.469487966831622e-5, 0.00012349587362568486, 0.00014938975945598458, 1.0409775057384956e-5, 1.5040329836676089e-5, -2.358375711194132e-6, 4.678058405332213e-6]
API
Fortuna.solve
— Methodsolve(Problem::SensitivityProblemTypeI; backend = AutoForwardDiff())
Function used to solve sensitivity problems of type I (sensitivities w.r.t. the parameters of the limit state function).
Fortuna.solve
— Methodsolve(Problem::SensitivityProblemTypeII; backend = AutoForwardDiff())
Function used to solve sensitivity problems of type II (sensitivities w.r.t. the parameters of the random vector).
Fortuna.SensitivityProblemTypeI
— TypeSensitivityProblemTypeI <: AbstractReliabilityProblem
Type used to define sensitivity problems of type I (sensitivities w.r.t. the parameters of the limit state function).
X::AbstractVector{<:UnivariateDistribution}
: Random vector $\vec{X}$ρˣ::AbstractMatrix{<:Real}
: Correlation matrix $\rho^{X}$g::Function
: Limit state function $g(\vec{X}, \vec{\Theta})$Θ::AbstractVector{<:Real}
: Parameters of limit state function $\vec{\Theta}$
Fortuna.SensitivityProblemTypeII
— TypeSensitivityProblemTypeII <: AbstractReliabilityProblem
Type used to define sensitivity problems of type II (sensitivities w.r.t. the parameters of the random vector).
X::Function
: Random vector $\vec{X}(\vec{\Theta})$ρˣ::AbstractMatrix{<:Real}
: Correlation matrix $\rho^{X}$g::Function
: Limit state function $g(\vec{X})$Θ::AbstractVector{<:Real}
: Parameters of limit state function $\vec{\Theta}$
Fortuna.SensitivityProblemCache
— TypeSensitivityProblemCache
Type used to store results of sensitivity analysis for problems of type I (sensitivities w.r.t. the parameters of the limit state function).
FORMSolution::iHLRFCache
: Results of reliability analysis performed using First-Order Reliability Method (FORM)∇β::Vector{Float64}
: Sensivity vector of reliability index $\vec{\nabla}_{\vec{\Theta}} \beta$∇PoF::Vector{Float64}
: Sensivity vector of probability of failure $\vec{\nabla}_{\vec{\Theta}} P_{f}$